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This paper studies the asymptotic behavior of the integral kernel of the Dunkl

transform, the so-called Dunkl kernel, when one of its arguments is fixed and the

other tends to infinity either within a Weyl chamber of the associated reflection

group, or within a suitable complex domain. The obtained results are based on the

asymptotic analysis of an associated system of ordinary differential equations. They

generalize the well-known asymptotics of the confluent hypergeometric function 1F1

to the higher-dimensional setting and include a complete short-time asymptotics for

the Dunkl-type heat kernel. As an application, it is shown that the representing

measures of Dunkl’s intertwining operator are generically continuous. # 2002 Elsevier

Science (USA)
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1. INTRODUCTION AND RESULTS

In the theory of rational Dunkl operators as initiated by Dunkl [5], there
is an analogue of the classical exponential function, commonly called the
Dunkl kernel. It generalizes the usual exponential function in many respects,
and can be characterized as the solution of a joint eigenvalue problem for
the associated Dunkl operators. Generally speaking, Dunkl operators are
parameterized differential-reflection operators attached to a finite reflection
group. During the last decade, such operators have found considerable
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attention in various areas of mathematics and mathematical physics. They
are, for example, useful in the study of integrable quantum many-body
systems of Calogero–Moser–Sutherland type (for an up-to-date bibliogra-
phy, we refer to [4]), and have led to a rapid development in the theory of
special functions related with root systems; see for instance [10, 14]. Among
the variants of Dunkl operators, especially the rational ones allow for a far-
reaching harmonic analysis in close analogy to the classical Fourier analysis
on RN : For example, there exists an analogue of the Fourier transform}the
Dunkl transform}which establishes a natural correspondence between the
action of Dunkl operators on one hand and multiplication operators on the
other [7, 15]. The integral kernel of this transform is the Dunkl kernel. It was
first introduced in [6] and has since then been studied in a variety of aspects
among which we mention [7, 15, 17, 19]. The present paper contributes to a
further study of its asymptotic and structural properties.

In order to introduce our setting and results, let R be a reduced (not
necessarily crystallographic) root system in RN with the standard Euclidean
inner product h: ; :i: This means that R � RN =f0g is finite with saR ¼ R and
R \ Ra ¼ f�ag for all a 2 R; with sa denoting the reflection in the
hyperplane Ha orthogonal to a: Let G � OðRNÞ denote the finite reflection
group generated by the sa; a 2 R; and put RN

reg :¼ RN =
S

a2R Ha: The
connected components of RN

reg are called the Weyl chambers of G: As
customary in this context, we assume that the root system R is normalized
by jaj2 ¼ 2 for all a; and we denote the bilinear extension of h: ; :i to C

N by
h: ; :i as well. Let further k : R ! C be a multiplicity function on R (i.e. k is
invariant under the natural action of G on R). In the present paper, we shall
assume throughout that k is non-negative, i.e. kðaÞ50 for all a 2 R: The
(rational) Dunkl operators associated with G and k are given by

TxðkÞf ðxÞ :¼ @xf ðxÞ þ
X
a2Rþ

kðaÞha; xi f ðxÞ � f ðsaxÞ
ha; xi ; x 2 RN :

Here @x denotes the usual partial derivative in direction x and Rþ is an
arbitrary but fixed positive subsystem of R: It is a remarkable property of
the TxðkÞ that they mutually commute, see [5]. The Dunkl kernel Ekðx; yÞ
associated with G and k can be characterized as the unique solution of the
joint eigenvalue problem for the corresponding Dunkl operators, more
precisely: for each fixed y 2 C

N ; the function x/Ekðx; yÞ is the unique real-
analytic solution of the system

TxðkÞf ¼ hx; yif for all x 2 RN and f ð0Þ ¼ 1; ð1:1Þ

cf. [17]. In case k ¼ 0 we just have Ekðx; yÞ ¼ ehx;yi: The generalized
exponential kernel Ekðx; yÞ is symmetric in its arguments and has a unique
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holomorphic extension to C
N � C

N : It satisfies

Ekðlz;wÞ ¼ Ekðz; lwÞ and Ekðgz; gwÞ ¼ Ekðz;wÞ ð1:2Þ

for all z;w 2 C
N ; l 2 C and g 2 G:

Originally, Ek was defined in [6] by means of the so-called intertwining
operator Vk: In fact, there exists a unique linear isomorphism Vk on
polynomials, homogeneous of degree 0; and such that

TxðkÞVk ¼ Vk@x for all x 2 RN and Vkð1Þ ¼ 1;

see [5, 9]. In [19] it was shown that Vk (k always being non-negative) admits
a positive integral representation as follows: Let M1ðRNÞ denote the space
of probability measures on the Borel s-algebra of RN : Then for every
x 2 RN ; there exists a unique mk

x 2 M1ðRNÞ such that

VkpðxÞ ¼
Z
RN

pðxÞ dmk
xðxÞ ð1:3Þ

for each polynomial function p on RN : The representing measures mk
x are

compactly supported with supp mk
xD cofgx; g 2 Gg; the convex hull of the

orbit of x under G: By means of formula (1.3), Vk may be extended to
various larger function spaces, e.g. the space CðRNÞ of continuous functions
on RN : We denote this extension by Vk again. Then for fixed y 2 CN ;

Ekðx; yÞ ¼ Vkðeh : ;yiÞðxÞ ¼
Z
RN

ehx;yi dmk
xðxÞ ðx 2 RNÞ: ð1:4Þ

This, in particular, implies that

Ekð�ix; yÞ ¼ Ekðix; yÞ and jEkðix; yÞj41 for all x; y 2 RN : ð1:5Þ

As already indicated, the Dunkl kernel is especially of interest as it gives
rise to a corresponding integral transform on RN : The Dunkl transform
associated with G and k involves the weight function

wkðxÞ ¼
Y
a2Rþ

jha; xij2kðaÞ;

which is G-invariant and homogeneous of degree 2g; with the index

g :¼ gðkÞ ¼
X
a2Rþ

kðaÞ50:
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It is defined by

#ff
kðxÞ :¼ c�1

k

Z
RN

f ðxÞEkð�ix; xÞwkðxÞ dx; f 2 L1ðRN ;wkÞ;

here ck is the Mehta-type constant

ck :¼
Z
RN

e�jxj2=2wkðxÞ dx:

An explicit expression for ck can be found in [17]. The Dunkl transform
shares many properties of the classical Fourier transform. For example,
there exist a Plancherel theorem and an inversion theorem for it. For details
the reader is referred to [7, 15].

In this paper, we study the asymptotic behavior of x/Ekðx; yÞ for large
arguments x; with y 2 RN

reg considered as a fixed parameter. Let C denote
the Weyl chamber attached with the positive subsystem Rþ;

C ¼ fx 2 RN : ha; xi > 0 for all a 2 Rþg;

and for d > 0;

Cd :¼ fx 2 C : ha; xi > djxj for all a 2 Rþg:

Our main result is the following asymptotic behavior, uniform for the
variable tending to infinity in cones Cd:

Theorem 1. There exists a constant non-zero vector v ¼ ðvgÞg2G 2 CjGj

such that for all y 2 C; g 2 G and each d > 0;

lim
jxj!1; x2Cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞwkðyÞ

p
e�ihx;gyiEkðix; gyÞ ¼ vg:

The proof of this theorem, which will be given in Section 4, is based on the
analysis of an associated system of first-order ordinary differential
equations, which is derived from the eigenfunction characterization (1.1)
of Ek: The idea for this approach goes back to [15], where it was used to
obtain exponential estimates for the Dunkl kernel. An immediate
consequence of Theorem 1 is the following ray asymptotic for the Dunkl
kernel, making precise a conjectural remark in [7].
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Corollary 1. For all x; y 2 C and g 2 G;

lim
t!1

tge�it hx;gyiEkðitx; gyÞ ¼ vgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞwkðyÞ

p ;

the convergence being locally uniform with respect to the parameter x:

In the particular case g ¼ e (the unit of G), this result can be extended to a
larger range of complex arguments by use of the Phragm!een–Lindel .oof
principle. We consider the closed right half-plane H ¼ fz 2 C : Re z50g;
and denote by z/zg the holomorphic branch in C=fx 2 R : x40g with
1g ¼ 1: We shall prove

Theorem 2. Let x; y 2 C: Then

lim
z!1; z2H

zge�zhx;yiEkðzx; yÞ ¼ igveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞwkðyÞ

p :

An interesting consequence of this result concerns the short-time behavior
of the Dunkl-type heat kernel

Gkðt; x; yÞ ¼ 1

ð2tÞgþN=2
ck

e�ðjxj2þjyj2Þ=4tEk

xffiffiffiffiffi
2t

p ;
yffiffiffiffiffi
2t

p
� �

ðx; y 2 RN ; t > 0Þ; which was first introduced in [18]. After suitable
normalization, the kernel Gk behaves for short times like the free Gaussian
heat kernel G0ðt;x; yÞ ¼ ð4ptÞ�N=2

e�jx�yj2=4t; as conjectured in [20]. More
precisely,

Corollary 2. For all x; y 2 C;

lim
t#0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞ wkðyÞ

p
Gkðt;x; yÞ

G0ðt; x; yÞ ¼ 1:

Indeed, it is immediate from Theorem 2 that the limit above exists for all
x; y 2 C and is equal to igvec0=ck: On the other hand, Theorem 3.3 of [20]
shows}based on completely different methods}that the limit exists and
equals 1 for a restricted range of arguments x; y 2 C: This combination
proves Corollary 2 and at the same time implies the value of ve:

ve ¼ i�g ck

c0
: ð1:6Þ

Remark 1. The explicit determination of the constants vg with gae

(or of ve without falling back to [20]) is an open problem. The proof of
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Theorem 1 yields the invariance property

vg ¼ vg�1 for all g 2 G;

but additional techniques seem to be necessary to obtain further
information.

The asymptotic result of Theorem 1 also allows to deduce at least a
certain amount of information about the structure of the intertwining
operator Vk and its representing measures mk

x according to formula (1.3).
These measures are explicitly known in very special cases only, namely
essentially for the rank-one-case as well as the symmetric group S3 [8], and
very little is known about their general structure either. In particular, as to
the authors’ knowledge, no results towards the continuity properties of the
mk

x have been obtained so far. We shall employ a well-known characteriza-
tion of continuous measures due to Wiener by means of their (classical)
Fourier–Stieltjes transform, which coincides with the kernel Ekð�ix; : Þ in
case of mk

x: (Recall that a measure m 2 M1ðRNÞ is called continuous, if
mðfxgÞ ¼ 0 for all x 2 RN :) Theorem 1 gives just sufficient information on
the growth of the Dunkl kernel in order to apply Wiener’s criterion. This
yields

Theorem 3. If g > 0; i.e. apart from the classical Fourier case, the

measure mk
x is continuous for all x 2 RN

reg:

We conjecture that the measures mk
x are even absolutely continuous with

respect to Lebesgue measure for all regular x; provided k is such that
fa 2 R j kðaÞ > 0g spans RN : This is in fact true in the rank-one case, which
provides a simple but illustrative example for our results. A short discussion
of this example is given in Section 2. Section 3 contains the asymptotic
analysis of the differential equation associated with the kernel Ek; as well as
the implications concerning its asymptotic behavior. These results are the
basis for the proofs of Theorems 1–3, which are completed in Section 4.

Remark 2. We mention that the group invariant counterpart of Ek;
called ‘‘generalized Bessel function’’ in [17], can be considered as a natural
generalization of the usual one-variable Bessel function, to which it reduces
in the rank-one case (see below). For Weyl groups and certain half-integer
multiplicity parameters k; generalized Bessel functions have an interpreta-
tion as spherical functions of a Cartan motion group. For the details
concerning this identification we refer to [16, 17]. For such generalized Bessel
functions corresponding to the group case, and with both the geometric and
spectral variable in C; asymptotic results are derived in [2] which are more
precise than can be obtained by averaging the results in Theorem 1.
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Estimates on the generalized Bessel function in the group case with spectral
variable in C; but with arbitrary geometric variable, can be found in [3]. The
methods in [2, 3], however, use the presence of additional ambient structure
for these special values of the multiplicity parameters, and therefore do not
apply in our case of general non-negative k:

2. EXAMPLE: THE RANK-ONE CASE

Let N ¼ 1: Then the only choice of R (being reduced) is R ¼ f�
ffiffiffi
2

p
g:

Accordingly, G ¼ fid; sg ffi Z2 with sðxÞ ¼ �x: The Dunkl operator TðkÞ ¼
T1ðkÞ associated with the multiplicity parameter k50 is given by

TðkÞf ðxÞ ¼ f 0ðxÞ þ k
f ðxÞ � f ð�xÞ

x
:

The corresponding intertwining operator Vk and the kernel Ek were
determined in [6, 7]. In particular,

EZ2

k ðz;wÞ ¼ jk�1=2ðizwÞ þ zw

2k þ 1
jkþ1=2ðizwÞ:

Here ja denotes the normalized spherical Bessel function

jaðzÞ ¼ 2aGðaþ 1Þ JaðzÞ
za

¼ Gðaþ 1Þ
X1
n¼0

ð�1Þnðz=2Þ2n

n!Gðn þ aþ 1Þ:

The integral representation (1.4) of EZ2

k is given by

EZ2

k ðz;wÞ ¼ Gðk þ 1=2Þ
Gð1=2Þ GðkÞ

Z 1

�1

etzwð1� tÞk�1ð1þ tÞk
dt

¼ ezw
1F1ðk; 2k þ 1;�2zwÞ: ð2:1Þ

Thus for xa0; the associated representing measure is

dmk
xðuÞ ¼

Gðk þ 1=2Þ
Gð1=2Þ GðkÞ 1½�jxj;jxj�ðuÞ

1

jxj 1� u

x

	 
k�1

1þ u

x

	 
k

du;

which is absolutely continuous with respect to Lebesgue measure. Further,
recall the well-known asymptotic expansion of Kummer’s function 1F1 (see
e.g. [1, (13.5.1)]):

lim
z!1; z2H

zk
1F1ðk; 2k þ 1;�2zÞ ¼ Gð2k þ 1Þ

2kGðk þ 1Þ:
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Thus the constants ve and vs in Theorems 1 and 2 are given by

ve ¼
Gð2k þ 1Þ
2kGðk þ 1Þ i�k; vs ¼ Gð2k þ 1Þ

2k Gðk þ 1Þ ik:

3. ASYMPTOTICS OF Ek ALONG CURVES IN A WEYL CHAMBER

For x; y 2 RN define

fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞwkðyÞ

p
e�ihx;yiEkðix; yÞ:

Observe that f is symmetric in its arguments. In this section, we shall study
the asymptotic behavior of x/fðx; yÞ along curves in a fixed Weyl
chamber, with the second component y 2 RN

reg being fixed. In view of the
invariance properties of wk and Ek under the action of G; we may restrict
ourselves to the case x 2 C (the chamber associated with Rþ) and y 2 gC for
some g 2 G: Following an idea of [15], we introduce an auxiliary vector field
F ¼ ðFgÞg2G on RN � RN by

Fgðx; yÞ :¼ fðx; gyÞ:

For fixed y; we consider F along a differentiable curve k : ð0;1Þ ! C: The
eigenfunction characterization (1.1) of Ek then translates into a first-order
ordinary differential equation for t/FðkðtÞ; yÞ: We shall determine the
asymptotic behavior of its solutions, provided k is admissible in the
following sense:

Definition 1. A C1-curve k : ð0;1Þ ! C is called admissible, if it
satisfies the subsequent conditions:

(1) There exists a constant d > 0 such that kðtÞ 2 Cd for all t > 0:

(2) limt!1 jkðtÞj ¼ 1 and k0ðtÞ 2 C for all t > 0:

t�'

δ

0

C

C

�

. .
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Note that conditions (1) and (2) imply that limt!1ha; kðtÞi ¼ 1 for all
a 2 Rþ: An important class of admissible curves are the rays kðtÞ ¼ tx with
some fixed x 2 C: Corollary 1 describes the asymptotic behavior of x/
Fðx; yÞ along such rays. In this section, we prove that t/FðkðtÞ; yÞ is
asymptotically constant as t ! 1 for arbitrary admissible curves, not just
for rays. In the next section it will become clear that the limit value is
actually independent of y and k:

Theorem 4. If k : ð0;1Þ ! C is admissible, then for every y 2 C; the

limit

lim
t!1

FðkðtÞ; yÞ

exists in CjGj; and is different from 0:

The subsequent proof of Theorem 4 is based on the following variant of
formula (3.1) in [15]:

Lemma 1. For fixed x; y 2 RN ;

@xFgðx; yÞ ¼
X
a2Rþ

kðaÞ ha; xiha; xi e�iha;xiha;gyi Fsagðx; yÞ ðx 2 RN
regÞ:

Proof. The eigenfunction characterization (1.1) of the kernel Ek;
together with the invariance property Ekðgx; gyÞ ¼ Ekðx; yÞ; implies that

@xEkðx; yÞ ¼ hx; yiEkðx; yÞ �
X
a2Rþ

kðaÞ ha; xiha; xi ðEkðx; yÞ � Ekðx; sayÞÞ:

Moreover, if x 2 RN
reg; then

@x
ffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞ

p
¼

X
a2Rþ

kðaÞ ha; xiha; xi

 ! ffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞ

p
:

It follows that

@xFgðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞwkðyÞ

p
e�ihx;gyi

X
a2Rþ

kðaÞ ha; xiha; xi Ekðix; sagyÞ

¼
X
a2Rþ

kðaÞ ha; xiha; xi e�ihx;gyieihx;sagyiFsagðx; yÞ:

As saðxÞ � x ¼ �ha; xia; this implies the assertion. ]
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We are interested in the derivative of x/Fðx; yÞ along differentiable
curves in C; with the second component y being fixed. The following is
immediate from the previous lemma:

Corollary 3. For a C1-curve k : ð0;1Þ ! RN
reg and fixed y 2 RN define

Fk :¼ ðFk
g Þg2G by Fk

g ðtÞ :¼ FgðkðtÞ; yÞ: Then Fk satisfies the differential

equation

ðFkÞ0ðtÞ ¼ AkðtÞFkðtÞ; ð3:1Þ

where Ak : ð0;1Þ ! C
jGj�jGj is given by Ak ¼

P
a2Rþ

kðaÞBk
a ; and

ðBk
aðtÞÞg;h ¼

ha; k0ðtÞi
ha; kðtÞi e�iha;kðtÞiha; gyi if h ¼ sag;

0 otherwise:

8><>:
If k is a ray, i.e. kðtÞ ¼ tx with some fixed x 2 C; then

ðBk
aðtÞÞg;sag ¼ 1

t
e�itha;xiha;gyi:

Note that in this typical case, t ¼ 1 is an essential singularity of Ak:
However, AkðtÞ ¼ Oð1

t
Þ as t ! 1; i.e. the system is asymptotically constant

(in fact asymptotically zero) in the sense of [11]. This suggests that the
solution Fk should be asymptotically constant as t ! 1; which just means
that limt!1 FkðtÞ exists as asserted in Theorem 4.

The decisive criterion for the proof of Theorem 4 is the following result on
the asymptotic integration of ordinary linear differential equations, which is
a special case of the Levinson-type Theorem 1.11.1 in [11], and is originally
due to [22]:

Proposition 1(Eastham [11], Wintner [22]). Consider the linear differ-

ential equation

x0ðtÞ ¼ AðtÞxðtÞ; ð3:2Þ

where A : ½t0;1Þ ! C
n�n is a continuous matrix-valued function satisfying the

following integrability conditions:

(1) The matrix-valued improper Riemann integral
R1

t0
AðtÞdt converges.

In particular, *AAðtÞ :¼
R1

t
AðsÞds is well defined on ½t0;1Þ:

(2) A *AA 2 L1ð½t0;1Þ;C n�nÞ:

Then (3.2) has a basis of solutions fxkðtÞ; 14k4ng of the asymptotic form

xkðtÞ ¼ ek þ oð1Þ as t ! 1; where ek is the kth unit vector in Rn: In
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particular, for each solution x of (3.2), the limit limt!1 xðtÞ exists. Moreover,
if xa0; then limt!1 xðtÞa0:

Proof of Theorem 4. We shall verify that the matrix Ak satisfies the
conditions of Proposition 1 with arbitrary t0 > 0: For (1), let g 2 G and
a 2 Rþ: Then if T > t5t0;Z T

t

ðBk
aðsÞÞg;sag ds ¼

Z T

t

ha; k0ðsÞi
ha; kðsÞi e�iha;kðsÞiha;gyi ds

¼
Z ha;gyiha;kðTÞi

ha;gyiha;kðtÞi

1

u
e�iu du:

This integral exists, because the admissible curve k remains in the Weyl
chamber C: For abbreviation, put ja;gðtÞ :¼ ha; kðtÞijha; gyij; which is
strictly positive for all t: Also note that limt!1 ja;gðtÞ ¼ þ1; by
admissibility of k: We thus obtain

lim
T!1

Z T

t

ðBk
aðsÞÞg;sag ds ¼ i signðha; gyiÞsiðja;gðtÞÞ � Ciðja;gðtÞÞ; ð3:3Þ

where for t > 0; siðtÞ ¼ �
R1
t

sin u
u

du and CiðtÞ ¼ �
R1
t

cos u
u

du are the
integral sine and cosine, respectively. Thus in particular, condition (1) is
satisfied. To verify condition (2), notice first that the matrix entries of
AkðtÞ *AAkðtÞ are linear combinations with constant coefficients, of terms of the
following kind:

Ia;b;gðtÞ :¼
ha; k0ðtÞi
ha; kðtÞi e�iha;kðtÞiha;gyi

�
� i siðjb;sagðtÞÞ � Ciðjb;sagðtÞÞ

�
with g 2 G; a; b 2 Rþ: In order to estimate the integral sine and cosine
terms, we use that for t > 0;

jsiðtÞj42=t; jCiðtÞj42=t: ð3:4Þ

In fact, integration by parts yields

siðtÞ ¼ � cos t
t

þ
Z 1

t

cos u

u2
du;

which readily implies the first part of (3.4), and the second one is seen in a
similar way. Moreover, as k is admissible, we have ha; kðtÞi > 0 for all t > 0;
and there exists some constant d > 0 such that

hb; kðtÞi5djkðtÞj5dha; kðtÞi=
ffiffiffi
2

p
for all a; b 2 Rþ:
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Together with (3.4), this yields the estimation

jIa;b;gðtÞj4C1
ha; k0ðtÞi

ha; kðtÞihb; kðtÞi4C2
ha; k0ðtÞi
ha; kðtÞi2

with constants C1; C2 depending on g; a; b only. AsZ 1

t0

ha; k0ðtÞi
ha; kðtÞi2

dt ¼
Z 1

ha;kðt0Þi

1

u2
du51;

it follows that Ak fulfills condition (2). ]

4. PROOFS OF THE MAIN THEOREMS

For the proof of Theorem 1 we consider x/Fðx; yÞ along arbitrary
admissible curves, and infer by an interpolation technique that the limit in
Theorem 4 is independent of the special choice of the admissible curve k and
also of y 2 C: We start with a supplementary notation.

Definition 2. A sequence ðxnÞn2N � C with limn!1 xn ¼ 1 is called
admissible, if there exists an interpolating admissible curve for it, i.e. an
admissible k : ð0;1Þ ! C such that xn ¼ kðtnÞ for suitable parameters tn

with limn!1 tn ¼ 1:

Remark 3. The following special situation will be of importance in the
sequel: Suppose that ðxnÞn2N is contained in Cd for some d > 0 and satisfies
limn!1 jxnj ¼ 1 as well as xnþ1 � xn 2 C for all n 2 N: Then ðxnÞn2N is
admissible. An admissible interpolating curve is obtained by slightly
smoothening the piecewise linear connection of the successive points xn:

Proof of Theorem 1. In a first step, we show that there exists a non-zero
vector vðyÞ ¼ ðvgðyÞÞg2G 2 C

jGj such that for each admissible curve k in C;

lim
t!1

FðkðtÞ; yÞ ¼ vðyÞ: ð4:1Þ

For this, fix y 2 C and let k1 ; k2 be any two admissible curves, both
contained in some Cd: With the above remark in mind, we can inductively
construct an admissible sequence ðxnÞn2N � Cd with x2n�1 2 k1 and x2n 2 k2
for all n 2 N: In fact, suppose that x1; . . . ; xn are already constructed, and
consider the set Sn ¼ fx 2 Cd : x � xn =2 Cg; which is bounded. The curves
ki being admissible, we can therefore choose xnþ1 from the part of the
relevant curve ki which is contained in the complement of Sn; and we can do
this in such a way that limn!1 jxnj ¼ 1: Now join the successive points xn
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by an interpolating admissible curve k: Then according to Theorem 4, all
three limits

lim
t!1

Fðk1ðtÞ; yÞ; lim
t!1

Fðk2ðtÞ; yÞ; lim
t!1

FðkðtÞ; yÞ

exist, are different from zero, and must in fact be equal by our choice of the
interpolating curve k: This proves (4.1). Next, we focus on admissible rays.
Observe that Fgðtx; yÞ ¼ Fg�1ðty; xÞ for all g 2 G and x; y 2 C: Together
with (4.1), this implies that vgðyÞ ¼ vg�1ðxÞ; and therefore vgðxÞ ¼ vg�1ðxÞ ¼
vgðyÞ ¼: vg: Put v ¼ ðvgÞg2G: Then

lim
t!1

FðkðtÞ; yÞ ¼ v ð4:2Þ

for every admissible k and every y 2 C: Now assume that the statement of
Theorem 1 is false. Then there exist e > 0 and a sequence ðxnÞn2N � Cd with
limn!1 jxnj ¼ 1 and such that

max
g2G

jFgðxn; yÞ � vgj > e for all n 2 N:

We may also assume without restriction that ðxnÞn2N is admissible}again
because for each x 2 Cd the set fz 2 Cd : z � x =2 Cg is bounded. Hence
relation (4.2) entails limn!1 Fgðxn; yÞ ¼ vg; a contradiction. ]

The proof of Theorem 2 is based on the Phragm!een–Lindel .oof Theorems
(see [21, Sect. 5.6]) for the right half-plane H ¼ fz 2 C : Re z50g:

Proof of Theorem 2. We may assume that g > 0: For fixed x; y 2 C

define

GðzÞ :¼ zg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞwkðyÞ

p
e�zhx;yiEkðzx; yÞ;

which is regular in H =f0g and continuous in H with Gð0Þ ¼ 0: The integral
representation (1.4) easily implies that

jEkðzx; yÞj4max
g2G

eRe zhgx;yi for all z 2 C;

cf. [19, Corollary 5.4] or, alternatively, [15]. As x and y are contained in the
same Weyl chamber, the inequality hgx; yi4hx; yi holds for all g 2 G ([13,
Theorem 3.1.2]). This shows that

jGðzÞj4jzjg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞwkðyÞ

p
eRe zðhgx;yi�hx;yiÞ4jzjg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkðxÞwkðyÞ

p
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as long as Re z50: Hence G is of subexponential growth when restricted to
H: More precisely, for every d > 0;

GðzÞ ¼ OðedjzjÞ as z ! 1 within H:

Next, consider G along the boundary lines of H; k�iðtÞ ¼ �it; t > 0:
According to Theorem 1, limt!1 GðitÞ ¼ igve: Moreover, Gð�itÞ ¼ GðitÞ for
t > 0 (cf. (1.5)); hence limt!1 Gð�itÞ exists as well. Employing the
Phragm!een–Lindel .oof Theorems 5.62 and 5.64 of [21], we deduce that G is
in fact bounded in H and that limz!1; z2H GðzÞ ¼ igve: ]

We finally come to the proof of Theorem 3. The key for our approach is
the following simple observation: according to formula (1.4), one may write

Ekðx;�ixÞ ¼
Z
RN

e�ihx;yi dmk
xðyÞ ¼ bmk

xmk
xðxÞ ðx; x 2 RNÞ; ð4:3Þ

where #mm stands for the classical Fourier–Stieltjes transform of m 2 M1ðRNÞ;

#mmðxÞ ¼
Z
RN

e�ihx;yi dmðyÞ:

Equation (4.3) suggests to employ Wiener’s theorem, which characterizes
Fourier–Stieltjes transforms of continuous measures on locally compact
abelian groups (here ðRN ;þÞ), see for instance [12, Lemma 8.3.7]:

Lemma 2 (Wiener). For m 2 M1ðRNÞ the following properties are equiva-

lent:

(1) m is continuous.

(2) limn!1
1

nN

R
fx2RN :jxj4ng j #mmðxÞj

2
dx ¼ 0:

Apart from this, our argumentation relies on the following growth
estimate for Ek; which is an easy consequence of Theorem 1 and of some
interest in its own:

Proposition 2. Let y 2 C: Then for each d > 0 there exists a constant

MdðyÞ > 0 such that

wkðxÞjEkðix; gyÞj2 4MdðyÞ for all x 2 Cd; g 2 G:

Remark 4. It is important at this point to note that the asymptotics of
Theorem 4 implies boundedness of x/wkðxÞjEkðix; gyÞj2 only within
suitable subsets of C: We do not know at present whether this function
remains bounded when the range of x is all of C:
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Proof of Theorem 3. For n 2 N put Kn :¼ fx 2 RN : 14jxj4ng: In view
of the properties of Ek ((1.2) and (1.5)), the assertion of the theorem is
equivalent to

lim
n!1

1

nN

Z
Kn\C

jEkðix; xÞj2 dx ¼ 0 for all x 2 RN
reg: ð4:4Þ

For fixed x 2 RN
reg and d > 0; define

Id1 ðnÞ :¼
1

nN

Z
Kn\Cd

jEkðix; xÞj2 dx;

Id2 ðnÞ :¼
1

nN

Z
Kn\ðC =CdÞ

jEkðix; xÞj2 dx:

Let further o denote the Lebesgue surface measure on SN�1 ¼ fx 2 RN :
jxj ¼ 1g: By use of (1.5), one obtains

Id2 ðnÞ ¼
1

nN

Z n

1

Z
SN�1\ðC =CdÞ

jEkðix; txÞj2 doðxÞ tN�1 dt

4
oðSN�1 \ ðC =CdÞÞ

nN

Z n

1

tN�1 dt4
1

N
oðSN�1 \ ðC=CdÞÞ;

which tends to 0 as d ! 0: Thus for given e > 0; we can find d > 0 such that
Id2 ðnÞ4e for all n 2 N: With this d fixed, the upper estimate on Ek according
to Proposition 2 yields

Id1 ðnÞ4
MdðxÞ

nN

Z
Kn\Cd

dx
wkðxÞ

:

The weight wk being homogeneous of degree 2g; we further haveZ
Kn\Cd

dx
wkðxÞ

¼ Ad

Z n

1

tN�2g�1 dt

with

Ad ¼
Z

SN�1\Cd

doðxÞ
wkðxÞ

51:

As g is strictly positive, this implies that limn!1 Id1 ðnÞ ¼ 0 and finishes the
proof. ]
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Remark 5. As already mentioned, we conjecture that for x 2 RN
reg the

measures mk
x are even absolutely continuous with respect to Lebesgue

measure, provided R0 :¼ fa 2 R j kðaÞ > 0g spans RN : We comment briefly
on the hypotheses for this conjecture. First note that some regularity
condition on x is necessary: In fact, for x ¼ 0 the representing measure is
always given by the unit mass at the origin. As to the condition on R0; let V 0

be the span of R0; where V 0 ¼ f0g by convention if R0 ¼ |: Suppose V 0aRn:
Let V 00 :¼ ðV 0Þ? be the orthoplement with corresponding decomposition
RN ¼ V 0 � V 00: For x 2 RN ; write x ¼ x0 þ x00 with x0 2 V 0; x00 2 V 00: Then it
is easily seen from characterization (1.1) of Ek that

Ekðx; yÞ ¼ Ekðx0; y0Þ � ehx
00;y00i for all x; y 2 RN

and accordingly,

mk
x ¼ mk

x0 � dx00 ;

where on the right side, k is understood as a multiplicity function on R0:
Thus for all x 2 RN ; mk

x is supported in a translate of V 0 and is therefore not
absolutely continuous.
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